RUM: network Representation learning throUgh Multi-level structural information preservation

نویسندگان

  • Yanlei Yu
  • Zhiwu Lu
  • Jiajun Liu
  • Guoping Zhao
  • Ji-Rong Wen
  • Kai Zheng
چکیده

We have witnessed the discovery of many techniques for network representation learning in recent years, ranging from encoding the context in random walks to embedding the lower order connections, to finding latent space representations with auto-encoders. However, existing techniques are looking mostly into the local structures in a network, while higherlevel properties such as global community structures are often neglected. We propose a novel network representations learning model framework called RUM (network Representation learning throUgh Multi-level structural information preservation). In RUM, we incorporate three essential aspects of a node that capture a network’s characteristics in multiple levels: a node’s affiliated local triads, its neighborhood relationships, and its global community affiliations. Therefore the framework explicitly and comprehensively preserves the structural information of a network, extending the encoding process both to the local end of the structural information spectrum and to the global end. The framework is also flexible enough to take various community discovery algorithms as its preprocessor. Empirical results show that the representations learned by RUM have demonstrated substantial performance advantages in real-life tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion

In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...

متن کامل

Manifold Learning for Multi-Modal Image Registration

The standard approach to multi-modal registration is to apply sophisticated similarity metrics such as mutual information. The disadvantage of these measures, in contrast to simple L1 or L2 norm, is the increased computational complexity and consequently the prolongation of the registration time. An alternative approach, which has so far not yet gained much attention in the literature, is to fi...

متن کامل

Bio-Inspired Scheme for Classification of Visual Information

In this chapter, research on visual information classification based on biologically inspired visually selective attention with knowledge structuring is presented. The research objective is to develop visual models and corresponding algorithms to automatically extract features from selective essential areas of natural images, and finally, to achieve knowledge structuring and classification with...

متن کامل

Multi-Level Structured Image Coding on High-Dimensional Image Representation

Robust image representations such as classemes [1], Object Bank (OB) [2], spatial pyramid representation(SPM) [3] have been proposed, showing superior performance in various high level visual recognition tasks. Our work is motivated by the need of exploring rich structural information encoded by these image representations. In this paper, we propose a novel Multi-Level Structured Image Coding a...

متن کامل

Intelligent multi-agent modeling of the interbank network and evaluation of the impact of regulatory policies

agent-based modeling is an emerging computational technique that makes it possible to simulate complex economic systems, including the banking network, with a bottom-up approach. In this paper, the country's banking network is simulated with an intelligent multi-agent modeling model and indicates that these agents behave based on the adaptive learning. This modeling has been done with the aim o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.02836  شماره 

صفحات  -

تاریخ انتشار 2017